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Abstract. We show in the two-band Hamiltonian for CuOQ layers that holes bind due to gauge
fields induced by antiferromagnetic fluctuations. Superconductivity appears as a superfluid
transition of pairs of holes.

1. Introduction

The purpose of this paper is to show that superconductivity in high-T layer compounds
is due to gauge fields induced by antiferromagnetic (aF) fluctuations in the disordered
phase. These gauge fields produce an attractive interaction leading to binding of holes.
As a result, superconductivity (5¢) appears as a superfluid transition of pairs of holes
with a charge of 2e.

Explicitly we assume the following Hamiltonian for the CuO planes. The
Cu 3d,>_,2 bonding band remains half-filled when we dope the system. The holes go
into the oxygen band O~ of type p,. This leads to a square lattice of spin-1/2 AF
Heisenberg interaction with a coupling constant J between the copper spins in the plane
and a Kondo coupling I between copper and oxygen. This model has been used in
previous works [1-8]. In addition we assume a small antiferromagnetic coupling J, = J,,
between copper—copper in the z direction perpendicular to the CuO layers. We also
assume that the Kondo coupling / is larger than J and the hopping constant # (¢t = 1/m)
is smaller than 1.

The binding of holes emerges in a special case when the quantum Heisenberg
antiferromagnetis described by the quantum disordered phase. The quantum disordered
phase is established for the non-linear sigma model in & + 1 dimensions for coupling
constants J << J_ (J_ is the critical coupling for the Néel state). The existence of a critical
coupling J, for the quantum spin-1/2 Heisenberg antiferromagnet is established for a
frustrated Heisenberg model (the presence of holes induces next-nearest-neighbour
coupling).

In this paper we represent the Heisenberg antiferromagnet by a non-linear sigma
modelin d + 1 dimensions. The crucial assumption is that J <. J_; therefore the quantum
Heisenberg antiferromagnet is described by the quantum disordered phase. In the
disordered phase the following new picture arises. The copper spin variables are
described by two charged bosons (the z,, z, variables used in the CP? representation).
The excitation for the bosons (the z;, z, variables) has a finite gap. This picture ceases
tobe correct when one approaches the Néelstate (J = J.): the gap vanishes and one of the
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bosonscondenses, leaving one gapless boson, which appears asa spin-wave excitation. In
the quantum disordered phases the massive charged bosons are coupled to a massless
gauge field. The fluctuations of the gauge fi¢ld are identical to the electromagnetic
fluctnations. When the system is doped the charged holes attract each other due to the
exchange of the gauge field, similar to the attraction of opposite electric charges in
electrodynamics, which exchange a photon.

This paper is organized in the following way. In section 2 we present the microscopic
model, which contains the Heisenberg Hamiltonian, the kinetic energy of the holes and
the coupling between the magnetic moments of the copper and the holes. Performing a
gauge transformation we show that the coupling between the magnetic moments of the
copper and the holes. Performing a gauge transformation we show that the coupling
between the magnetic moments and the holes is replaced by an aF background field and
a gauge field in which the holes are moving, It is the AF background field that gives rise
to new opposite charges for the holes. (The charges are defined with respect to the gauge
field determined by the fluctuations of the quantum disordered ar. Holes with spin up
have an opposite sign to holes with spin down they couple to the gauge field.) Section 3
is devoted to the derivation of the hole-hole interaction, This calculation is performed
using the following steps. The coupling betwesn the magnetic moments of the copper
and the holesis replaced by a staggered antiferromagnetic field (which acts as a potential
for the holes) and an additional gauge field. The fluctuations of the gauge field are
controlled by the AF Hamiltonian of the copper atoms. The gauge fields are described
within the formalism of the disordered phase, which consists of two massive bosons
coupled to a massless gauge field. The exchange of the gauge field between the massive
bosons gives rise to an attraction between the holes. Section 4 is devoted to the binding
problem and general discussions concerning the 2e superfluid.

2. The microscopic model

The action for this system is given by

S=8,+8,+5,; (1)

with

So = f i S [@npie, o, + £TPL ) )
o a=1.4¢

5,= [ ar (251,00, 0P +5 S 0n. 1) - 001, )
0 n na

+ 2 S 0, 1) 0 ) - 3 S o) ©

Ha My

and

si=| " de (1 2 O D)PL(R, 7) + ugOp(n, ’)) ' @
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Here Q(n) represents the spin-1/2 variable of Cu®* on a square lattice in the coherent-
state [9, 10] representation (£ = (Q,, Q,, Q5), || = 1). The p holes at the copper site
have d,2_,2 symmetry,

Pi(n, 1) =2 f(K) e X" P{(K, 1)
K

with the function
fK) = [1 — ¥cos K, + cos K,)]'2.

£(V?) is the kinetic energy operator for the holes with a large effective mass m. The
kinetic energy of the holes in the z direction is neglected and in the plane £(V2) ~
K*2m.

Ty is the Wess—Zumino (wz) term, which incorporates the quantum-mechanical
efects[9, 10]. Atthe classicallevel the actionisinvariant under the Mattis transformation
J—=—J, Q(n)— (—1)"Q(n) = M(n). The Wess—Zumino term Iwz[Q(n)] is not
invariant under the Mattis transformation. Therefore the guantum Heisenberg AFis not
invariant under this transformation. Recently it was shown that the sum of the wz term
vanishes for a square lattice [9, 10] and therefore the quantum Heisenberg AFin d > 1
dimensions is equivalent to the non-linear o model in D =d + 1 dimensions [11].
Working in the CP! representation (M = Z*aZ, Z* = (z{, z§), |z:|* + |22/ = 1) one
maps the Heisenberg AF to a two-component field Z with a gauge field A, which in the
disordered phase becomes equivalent to the electromagnetic gauge field. We introduce
a matrix g € SU(2), which satisfies the relation M - o = g~'0,g. Solving for the matrix
gwe find [12]: g, = Z1, g1n = Z3, 811 = —Z>5, 8 = Z,. In the SU(2) representation the
exchange Cu-O term takes the form:

2 (=1)"P*(n, 1) [M(n, 7) - ] P(n, T)

= 2 (=1)"P*(n, 7)[g"" (. T)o3g(n, D)]P(n, 7)

A, =AM+ (3,087 w=(r,1).

With the convention that P{n, 1) is a two-component spinor, we perform a local gauge
transformation:

Y*(n, 1) =P*(n,7)g7'(n, T)
y(n, 7) = g(n, T)P(n, 7)
A, =AM+ (0,8)87"

AFM represents the normal electromagnetic vector potential, which couples to the holes
with a charge of 1e. The gauge transformation separates the AF interaction into two
parts: a constant antiferromagnetic background field and a gauge field (3,2)g~". The
constant antiferromagnetic background field will transform the two-component spinor
P(n, t) into a one-component spinless fermion with the spin determined by the position
in space (odd sites spin up and even sites spin down or vice versa). This result is similar
to the one derived in [12] (see equations (10) and (11) there) for the Hubbard model
using the method of geometrical quantization.

In the CP! representation the Heisenberg AF action is decoupled with the aid of the
gauge field A, = (-1/2)(Z*3,Z ~ (3,Z%)Z) and the Lagrange multiplier A for the
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constraint Z*Z = 1 (see {13] pp 139-42). The action given in equation (1) takes, in the
coptinuum representation, the form

8
s= [ & [ @riy (.o, + @upde v
0
+Y*(r, D)2([3, + AP + (3,8)87' )Y, 7)

Bhe
+ M cos(QNy* (r, V)os(r, )} + j dr j d’r
0

X (%,(aﬁ i4,)Z*(3,~1A)Z+A(r, D) [Z* (L, Z(r, 1) ~ 1])_ 5)

The relation between the gauge field and the g € SU(2) matrix is given by

Ay =-[00,88¢ ' ha=[3,8g2 122

The wavevector Q = (z/a, x/a) reproduces the antiferromagnetic modulation
(—1)*; y is proportional to J, ¥ = y,A2"@*1 (g is the lattice constant, A is a cutoff,
A ~ 1/a, and d is the spatial dimension), y, = (Jn'/2hc) ! (c is the spin-wave velocity
and n =J,/J). For short wavelengths the coupling J, in the z direction is negligible,
leading to y, = (Jc)~!. Similarly, at high temperature such that fic/T < & (§ is the
magnetic correlation length), we neglect the temporal effects y = y,A?™¢ with y =
(JT)!, reducing the problem to the classical Heisenberg aF action.

In order to investigate the effect of the antiferromagnetic field on the holes, we
consider first the effect of the constant antiferromagnetic field. We diagonalized the
oxygen holes Hamiltonian in the absence of the gauge field. We introduce

¥(r) = 2 AK)C(K) exp(iKr)
K
and the Hamiltonian for the holes takes the form

H= 2 1 e(K)CE(K)co(K) +3 2 FAKICHEKIAK + Q)Co(K + Q)

Ko=1, Ko=1,]

+fK =~ Q)Co(K — Q)] (©)

Here £(K) represents the energy bands for the holes and 7 is the exchange coupling.
Such a Hamiltonian was considered by a number of authors in the past [14]. In our case
Q > 2K with K determined by the hole concentration &, Ky = A(2x8)? in the two-
dimepsional planes. For Q = 2Ky equation (6) can be diagonalized exactly.

For Q # 2Ky we have to diagonalize an infinite matrix, This is performed by a
sequence of 2 X 2 rotations in the space X, K + @, K + 20, . . .. Higher states such as
|K = 2Q) can be neglected since the energies of the holes in the vicinity of the Fermi
sphere satisfy I/le(K) = £(K = 20)| < 1. The leading contribution comes from the states
[K), |K+ Q) and |K}, |[K — Q}. In this subspace we diagonalize equation (6). We
introduce eigenvector operators y.{ K) and eigenvaiues £( K). We represent the original
operators C{K) in terms of the new ones and obtain

Co(K) = y,(K) cos & (K) cos a_(K)
~ olyo(K + @) sin @, (K) + v,(K — Q) sin _(K)] @
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where

KK, K £ 0)=PREfK = Q) (8)
cos 20, (K) = {1 + I(K, K = Q)/[e(K) — e(K = Q)]?}-12, (9)

In real space we define new spinors
%) = 2 V(K) exp(ik)

Using this representation we rewrite the action given in equation (5). Averaging over
the Fermi sphere we obtain that the gauge field couples only to spin up or spin down,
and the mixing term vanishes [14]:

m Yt (r, 1) [(8,8)8  NYlr, T) = m* 1yt (r, D)ios A J(r, T)  (10)
M*~ ! =m cos? o, (K) cos?a_ (K))ps. (11)

The meaning of equation (10) is that holes with spin up couple to the gauge field A,
and holes with spin down to the same gauge field with opposite sign —A,. Since the
gauge field A. is analogous to the scalar potential in electrodynamics, we may say that
the holes have opposite charges (the A, component is equivalent to the ordinary vector
potential in electrodynamics).

This result is consistent with the picture given in [12], where the spinor represents
spin up at evenssites and spin down at odd sites or vice versa. We mention that the validity
of these results depends on the hole concentration. The hole concentration determines
the Fermi energy. The mixing between states | K}, |K = Q) is controlled by the ratio #/1
and the hole concentration & (K = A(278)'/?). For Q = 2K the mixing is strong and
equation (10) is independent of ¢/I. For small hole concentration {(Q > 2Kg) equation
(10) depends on ¢/1. Therefore, for a fixed value of t/1, equation (10) is valid for § > 8,
with &, ~ (/)%

For the remaining part of the paper we consider hole concentrations such that
8 > 8in and use equations (10) and (11). The approximation involved in equation (10)
replaces 1" 039 by ¥*[o; + a{o — 03)]y, where |a} < 1, {a} = 0 is the xy anisotropy
parameter representing the spin-flip contribution. Since « is small, the leading con-
tribution will come from the ‘Ising’ part o;. Investigating the Heisenberg AF action we
find that after integrating the ‘Z’ variables the effective action depends only on two
parameters, the gauge field A and the Lagrange field 4 [13].

3. The derivation of the effective hole-hole interaction

The action that contains the holes and the aF Heisenberg Hamiltonian takes the form
B .
5 =f drj'd%[w(r, 7) ((ar +id,03)
0 _ )
1 EM o ; 2 .
+ e (@, +eA™ +id,0:)" | Y(r,v) +T(4,,4) (12)
B A
I(4,,A) = j dr J'ddr (NT,L,,[—(G# +id,) + 4] - 5;) (13)
0

where N = 2.
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We observe that the action givenin equation (12) has two gauge fieldsA™ andA. The
first is the normal electromagnetic field with the positive charge e (the electromagnetic
charge of the holes). The second gauge field has the origin from the antiferromagnetic
interaction. This gauge field couples the two charged bosons 7, z,. Owing to the Kondo
coupling between the holes and the copper spins M = z* oz, the holes behave as if they
had additional ‘charges’ (holes with spin up couple to A, and holes with spin down to
—A.,). The absolute value of the ‘charge’ is obtained from the coupling constant, which
governs the gauge fluctuations.

The action (A, 1) contains two parts: I'(0, {(1))+ [T (A, A} — I'(0, {1})]. The first one
determines the vatues {1) = M with M~} being the correlation length of the two charged
bosons z;, z, and therefore the correlation length of the spin-spin correlations,

(M(x) - M(y)) = 2" (x)oz(x)z* (Noz(y)) ~ 25 (23 ()2 (25 (y)z(x))

~ exp(—2M|x — y|).

Thesecondpart I'{4, A) will be shownto be analogous to the action of the elecromagnetic
field. The strength of those fluctuations is controlled by the coupling constant | M|, which
is also the inverse of the correlation length of the charged bosons z, 2.

We expand the action I'(A4, 1) in the large-N expansion. Following the derivation
given in [13] (pp 139-42) we have

DA 2= )+ 0) =T, () = M) + 5 2 [ol@)m(@)o(~a) + A0 (@4, (0))
g

(14)
At the order of one loop
dd'{' lK 1
a{g) = @my* T (KT + MOUK + q)F + Mz]
and satisfies (g}, # 0. For 7,,(g) we find

_ (A QK+9),CK+q9), 25,
(@) = | ey ((Kz + M?) [(F}( + )2+ MY (K? :M’))

const
M?
In agreement with the gauge invariance we have g,7,,(¢) = 0. The field v{q) is massive

and can be neglected. The only important term is the second one, which is identical to
the action of the electromagnetic field:

(qza,uu - ‘?,uq;:)'

T(4,, 1) =T(0, M?) + % j dr j dv(F,,)? = (0, M?)

n %f ddrfdr[(B,A,)z + (VXA +(VA,). (15)

Equation (15) was obtained for large N and can be problematic for our case N = 2. It is
expected on the basis of gauge invariance that, for J <J,, a 1/N? correction will not
change the form of equation (15). The effect of the 1 /N? will be to renormalize M — My,
This expansion is valid only for massive Z particles M # 0. For d = 3 we find that the
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particles Z have a gap M for y > y. (J < J.). The value of the gap is obtained by the
solution (3T'/8A)|,—m2 =0 and is given for d=3 for D=2+ 1 by the relation
M ~ A[1 — (1/4%mv,)] [13]. When we rescale the action given in equation (15) such that
it takes the form of the electromagnetic action, we find A — (M/2VN)A. As m electro-

dynamics we identify the coupling constant of A with a new ‘charge’ e* = =M /2VN.
(WhenJ— J_ the gap M and the charge vanish.} Therefore this description is valid only
in the disordered spin phase J < J_.

In equation (15) we have separated the longitudinal part from the transverse one. In
the Coulomb gauge we eliminate the longitudinal component A,. A_ satisfies the Gauss
law,

Vz(iAr) = _8*1{.}+(I’, 1)0'31;"1(?, t)

with positive and negative charges given by ¢* = M/2V/N. Solving the Gauss equation
we find the following effective Hamiltonian:

H= jdzrw (r, r)( - (3, +eA™M +ie*0;4,)? )1,,!";(1', T)
%2
+ [ atr [ a9, 0390, 1) (57) 0. 7, 03307, )

+1 [ a(o,4,5 + (Vx40 (16)

The effective Hamiltonian given in equation (16) is our main result. We have an
attractive Coulombic potential between the holes (with opposite spins), which have
positive and negative ‘charges’ e* (in addition the holes have positive electromagnetic
charge e). For 5 = 0 (d = 2) we find an attractive potential V(r) = —e*?In(r/a), and for
n # 0 (d = 3) we have V(r) = —e*?/r. The origin of this attractive Coulombic potential
is the z,, z, bosons from which the holes gain the ‘charge’ x¢*. The attraction is a result
of exchange of a gapless gauge boson A, between two holes of opposite ‘Charges’ e*
—e* with the same electromagnetic charge e.

Equation (16) is valid for the range of parameters¢ < [, = JandJ < J,. Thisequation
was obtained fwith the aid of two approximations, the 1/N expansion in equation (15)
and the result given in equation (10). If the approximation in equation (10) is not used
we have to substitute in equation (16) ¥*[0s + a0 — o3)]y instead of Pasy with
a <€ 1 (a is the xy anisotropy). This will not change the basic results for small a, which
is a function of t/1 < 1. ast/I decreases, the spin-flip parameter a decreases and the spin-
flip length I, increases. Therefore we need that [, > M~' (M~ is the spin correlation
length in the disordered phase). This condition /,M > 1 is fulfilled for ¢/ <1, I=J,
J < J,, and the spin-flip effect is negligible.

It is important to remark that the final Hamiltonian given in equation (16} does not
contain the charged bosons z;, z, and therefore M = z*0gz. They were completely
integrated (see equation (13)). This is only possible when (A} = M? # 0 such that the
magnetic correlation length (in the disordered AF phase) is much smaller than the
correlation length of the gauge field A,

An additional comment can be made on the physics described by the action I'(A, 1)
(see equation (15)). When M? > M? the gauge field A, has an infinite correlation length
(the photon phase). In this case the correlation length 1/M of the charged bosons z,, z,
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and spins M is short. In the opposite limit M? < M? the ‘photon’ phase is destroyed and
the ‘charged’ bosons form, at large distances, neutral spin variables M.

In this case the Hamiltonian (16) is not valid since the spin variables have long
correlation lengths and cannot disappear from the action.

According to Polyakov [13] a critical value of M? existsin 3 + 1 dimensions, It is for
this reason that we need the antiferromagnetic coupling n between the plane to be non-
zero (see equation (3)). The result of n # 0 is that the infrared fluctuations are in 3 + 1
dimensions.

4. The binding problem—discussions

In the remaining part of the paper we will concentrate on solving the Hamiltonian given
in equation (16) at the mean-field level. Owing to the fact that e* is not small and the
hole concentration is small, it makes no sense to solve the Bardeen—Cooper-Schrieffer
(BCs) equation for the gap A(K) given by

o e A(K")
MK) = 2 7= 5 el ~ i+ B3R @7

We look now for the solution of two holes, and check if the two holes bind together.
The variational wavefunction for two holes is given by

lpy = 2 x(ry ~ ra)b* (1, 72)|0)

L4 L]

where |0} is the vacuum with no holes and

br(riur)= 2 opi(r)dte(r)
o=+~
is the two-hole creation operator. Performing the variation (@ |H| @} with {@|@) = 1 we
find the following eigenvalue equation in the centre-of-mass system:

[=2V3 + v()]x(r} = Ax(r) £~ 1/@2m*). (18)

We assume an anisotropic three-dimensional system with V(r) = —e*2/r (this is not
completely justified since the electronic dispersion in the z direction is much smaller
than that in the plane). For the isotropic case, we find a hydrogen-like solution with
eigenvalues A, = —e*?/tn? and with a binding radius (the Bohr radius) & = t/e*2 In
order to consider a realistic situation we assume the potential V(r) = —e*?/(r? + %12,
where r is the distance between the hole in the plane and d is the distance between the
planes.

As aresult the binding occurs between holes in adjacent planes. Such a potential has
a bound-state solution. This can easily be seen if we take V(r) = —e*?/d for r < d and
V(r} = O for r > d (this problem was solved in [13] p 84).

The existence of a bound-state solution for two holes leads to a picture similar to the
Wannier excitons. First we obtain a bound state for two holes and assume that the pairs
of holes interact via the residual interaction between the pairs. This picture is valid for
the dilute limit of holes. We consider the case 8y, < 8 < 80 and E\N1/VE =L (L is
the average distance between the holes and & ~ #/e*2 is the binding radius of two holes).
When & = L this picture is not valid and we have no superconductivity. The relation
& = L determines 8, = 1/E%.
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The residual interaction between the pairs at large distances is negligible since the
charge of the pair is zero. (When we consider electromagnetic effects the interaction
between the pairs is (2e)%/R for R > ; e* is replaced by e* — e for R < £.) The effective
Hamiltonian for the pairs is a2 boson model with a hard-core repulsive interaction, which
has a superfluid transition [16] as a function of the pair concentration 8/2.

We compare our results with other models that make use of spin fluctuations for
superconductivity.

Using magnetic interaction, we show that in certain ranges of parameters the mag-
netic fluctuations are described by the fluctuations of two ‘charged’ boson fields z, z,,
which exchange a gauge field A, (similar to the exchange of a photon between two
charged particles).

We do not use directly spin fluctuations (like other authors [1-8]) but rather their
constituents. The spin fluctuation becomes the natural description when we approach
the Néel phase. In this case the correlation length 1/M of the z,, z, fields increases
M- 0), the gauge field a, loses its infinite correlation length (the photon becomes
massive) and our picture becomes invalid.

For the one-band Hubbard model in the limit of small U, Wen, Zhang and Schrieffer
[16] have used a background field similar to the one described by equation (6). However,
they consider normal spin fluctuations and we show that the relevant fluctuations in our
case are the ‘electromagnetic’ type, which lead to 1/r interactions.

To conclude, we have shown that gauge fields induced by antiferromagnetic fluc-
tuations in the disordered phase lead to binding of holes. The bosonic fluid created by
the whole pairs has a superfluid transition [15].

References

[1] Emery V J 1987 Phys. Rev. Let:. 582794
[2] Muramatsu A, Zeyher R and Schmeltzer D 1988 Europhys. Lett. 7 (5) 473
[3] Lohjr E 'Y, Martin T, Prelovsek P and Campbell D K 1988 Phys. Rev. B 38 2494
[14] AshkenaziJ, Kuper C G, Ron A, Revzen M and Schmeltzer D 1984 Solid State Commun. 51135
[15] Fisher D S and Hohenberg P C 1988 Phys. Rev. B 37 4936
[16] Wen, Zhang and Schrieffer
[7] Guo Y, Langlois J M and Goddard W A 111 1988 Science 239 896
[8] Aharony A, Birgeneou R and Kastner M A 1988 Proc. Adriatico Research Conf. vol 14 (Singapore:
World Scientific) )
[9] Haldane F D M 1988 Phys. Rev. Ler. 61 1029
{10] Fradkin E and Stone M 1988 Phys. Rev. B 38 7215
[11] Chakarvarty S, Halperin B I and Nelson D R 1988 Phys. Rev. Lett 60 1057
[12) Wiegman P B 1988 Phys. Rev. Lett. 60 821
[13] Polyakov A M 1987 Gauge Fields and Strings (New Yock: Harwood Academic)
[14] AshkenaziJ, Kuper C G, Ron A, Revzen M and Schmeltzer D 1984 Solid State Commun. 51 135
[15] Fisher D S and Hohenberg P C 1988 Phys. Rev. B 37 4936
[16]) Wen, Zhang and Schrieffer unpublished



