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Binding of holes induced by gauge fields 
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Received 21 June 1989, in final form 3 April 1991 

Abstract. Weshowinthe two-band HamiltonianforCuOlayersthat holesbindduetogauge 
fields induced by antiferromagnetic fluctuations. Superconductivity appears as a supeduid 
transition of painof holes. 

1. introduction 

The purpose of this paper is to show that superconductivity in high-T, layer compounds 
is due to gauge fields induced by antiferromagnetic (AF) fluctuations in the disordered 
phase. These gauge fields produce an attractive interaction leading to binding of holes. 
As a result, superconductivity (SC) appears as a superfluid transition of pairs of holes 
with a charge of 2e. 

Explicitly we assume the following Hamiltonian for the CuO planes. The 
Cu 3dXz-,.z bonding band remains half-filled when we dope the system. The holes go 
into the oxygen band 0- of type pp This leads to a square lattice of spin-1/2 AF 
Heisenberg interaction with a coupling constant J between the copper spins in the plane 
and a Kondo coupling I between copper and oxygen. This model has been used in 
previous works [NI. In addition we assume a small antiferromagnetic coupling J ,  = Jn 
between copper-copper in the z direction perpendicular to the CuO layers. We also 
assume that the Kondo coupling I is larger than J and the hopping constant t (t = l /m)  
is smaller than 1. 

The binding of holes emerges in a special case when the quantum Heisenberg 
antiferromagnet isdescribed by the quantumdisorderedphase. The quantumdisordered 
phase is established for the non-linear sigma model in d + 1 dimensions for coupling 
constants J < J ,  (Jc is the critical coupling for the NBel state). The existence of a critical 
coupling J,  for the quantum spin-@ Heisenberg antiferromagnet is established for a 
frustrated Heisenberg model (the presence of holes induces next-nearest-neighbour 
coupling). 

In this paper we represent the Heisenberg antiferromagnet by a non-linear sigma 
model in d + 1 dimensions. The crucial assumption is that J < J,; therefore the quantum 
Heisenberg antiferromagnet is described by the quantum disordered phase. In the 
disordered phase the following new picture arises. The copper spin variables are 
described by two charged bosons (the zl, r,variables used in the CP' representation). 
The excitation for the bosons (the zl ,  zz variables) has a finite gap. This picture ceases 
to be correctwhen one approaches theN6el state (J = J J :  the gapvanishes andoneof the 
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bosons condenses, leaving one gapless boson, which appears as a spin-wave excitation. In 
the quantum disordered phases the massive charged bosons are coupled to a massless 
gauge field. The fluctuations of the gauge field are identical to the electromagnetic 
fluctuations. When the system is doped the charged holes attract each other due to the 
exchange of the gauge field, similar to the attraction of opposite electric charges in 
electrodynamics, which exchange a photon. 

This paper is organized in the following way. In section 2 we present the microscopic 
model, which contains the Heisenberg Hamiltonian, the kinetic energy of the holes and 
the coupling between the magnetic moments of the copper and the holes. Performing a 
gauge transformation we show that the coupling between the magnetic moments of the 
copper and the holes. Performing a gauge transformation we show that the coupling 
between the magnetic moments and the holes is replaced by an AF background field and 
a gauge field in which the holes are moving. It is the AF background field that gives rise 
to new opposite charges for the holes. (The charges are defined with respect to the gauge 
field determined by the fluctuations of the quantum disordered AF. Holes with spin up 
have an opposite sign to holes with spin down they couple to the gauge field.) Section 3 
is devoted to the derivation of the hole-hole interaction. This calculation is performed 
using the following steps. The coupling between the magnetic moments of the copper 
and the holesis replaced by astaggered antiferromagnetic field (which acts asapotential 
for the holes) and an additional gauge field. The fluctuations of the gauge field are 
controlled by the AF Hamiltonian of the copper atoms. The gauge fields are described 
within the formalism of the disordered phase, which consists of two massive bosons 
coupled to a massless gauge field. The exchange of the gauge field between the massive 
bosons gives rise to an attraction between the holes. Section 4 is devoted to the binding 
problem and general discussions concerning the 2e superfluid. 

2. The microscopic model 

The action for this system is given by 

s = so + s, + s, 
with 

SO =I, da 2 /dzr{C(r ,  r ) [ J ,  + €(VZ)]P&, r)l 
B 

a = T . i  
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Here a ( n )  represents the spin-1/2 variable of Cuz+ on a square lattice in the coherent- 
state [9,10] representation (Cl  = (QI, !&, Q3), lint = 1). The p holes at the copper site 
have dx2-y2 symmetry, 

P:(n, 5 )  = zf(K) e-*"P:(K, r)  
K 

with the function 

f(K) = [l - &(COS K, +COS Ky)]'p 

L(V2) is the kinetic energy operator for the holes with a large effective mass m. The 
kinetic energy of the holes in the L direction is neglected and in the plane E(V%) - 
K2/2m. 

Twz is the WeseZumino (wz) term, which incorporates the quantum-mechanical 
efects[9, lo]. At theclassicalleveltheactionisinvariant undertheMattis transformation 
J+ -J, a(n)+(-l).n(n) =M(n). The Wess-Zumino term rwz[n(n)] is not 
invariant under the Mattis transformation. Therefore the quantum Heisenberg AF is not 
invariant under this transformation. Recently it was shown that the sum of the wz term 
vanishes for a square lattice.[9,10] and therefore the quantum Heisenberg  i in d > 1 
dimensions is equivalent to the non-linear U model in D = d + 1 dimensions [ll]. 
Working in the CP' representation (M = Z+crZ, 2' = (z: ,  L;), 1z1I2 + 1z21* = 1) one 
maps the Heisenberg AF to a two-component field Z with a gauge field A, which in the 
disordered phase becomes equivalent to the electromagnetic gauge field. We introduce 
a matrix g E SU(2), which satisfies the relation M . U = g-'o,g. Solving for the matrix 
g we find [12]: g,, = Zl,gI2 = Z 2 ,  g2, = -Z2,  gz = Z1. In the SU(2) representation the 
exchange Cu-0 term takes the form: 

( - 1 ) " ~ + ( n ,  r ) [ ~ ( n ,  z). ~ 1 %  z) 
n 

= E  ( - 1 ) " ~ + ( n ,  z)k-'(n, s)o&, W ( n ,  z) 

P = (r. 5). 

" 
A ,  = AEM + (dpg)g-' 
With the convention that P(n, r )  is a two-component spinor, we perform a local gauge 
transformation: 

yr+(n, r )  = P+(n,  z)g- ' (n,r)  

v(n, r )  = g(n ,  s)f'(n, z) 

A ,  =AEM +(J,g)g-'. 

AM represents the normal electromagneticvector potential, which couples to the holes 
with a charge of le. The gauge transformation separates the AF interaction into two 
parts: a constant antiferromagnetic background field and a gauge field (ap&- ' .  The 
constant antiferromagnetic background field will transform the two-component spinor 
P(n, z) into a one-component spinless fermion with the spin determined by the position 
in space (odd sites spin up and even sites spin down or vice versa). This result is similar 
to the one derived in [12] (see equations (10) and (11) there) for the Hubbard model 
using the method of geometrical quantization. 

In the CP' representation the Heisenberg AF action is decoupled with the aid of the 
gauge field A, = (-i/2)(Z+a,Z - (J,,Zt)Z) and the Lagrange multiplier A for the 
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constraint ZtZ = 1 (see I131 pp 139-42). The action given in equation (1) takes, in the 
continuum representation, the form 

s = dr  I d2rIv+(r, z)[a, + (a.g)g-"+. 5 )  

+ P ( r ,  z ) t ( [ a ,  + eA:E" + (a,g)g-'lz)v(r, r )  

+ 11 cos(Qr)yt+(r, z)ugq(r ,  r )}  + 1 dr  /ddr  
ghC 

o 

The relation between the gauge field and the g E SU(2) matrix is given by 

Ap =-[(apg)g-'Ii.i =[(apg)g-']i.z. 
The wavevector Q = ( E / @ ,  n/u) reproduces the antiferromagnetic modulation 

(-1)"; y is proportional to J ,  y = yoA2-(d+1) (a is the lattice constant, A is a cutoff, 
A - l / u ,  and d is the spatial dimension), yo = (J$&c)-' (c is the spin-wave velocity 
and q =  J $ ) .  For short wavelengths the coupling J ,  in the z dueclion is negligible, 
leading to yo = (Jhc)-'. Similarly, at high temperature such that hc/T < E ( E  is the 
magnetic correlation length), we neglect the temporal effects y = yoA''d with yo = 
(.U-', reducing the problem to the classical Heisenberg AF action. 

In order to investigate the effect of the antiferromagnetic field on the holes, we 
consider first the effect of the constant antiferromagnetic field. We diagonalized the 
oxygen holes Hamiltonian in the absence of the gauge field. We introduce 

~ ( r )  = ZC~(K)CW) exp(iKr) 
K 

and the Hamiltonian for the holes takes the form 

H = dK)CZ(K)c,(K) + U KK)C:(K)lf(K + Q)CdK + Q) 
KO= ? ,1 K.o= T.1 

+ f ( K  - Q)Co(K - Q)l. (6) 
Here E(K) represents the energy bands for the holes and I is the exchange coupling. 
Such a Hamiltonian was considered by a number of authors in the past [ 141. In our case 
Q > 2KF with KF determined by the hole concentration 6, KF = h(k6)"* in the two- 
dimensional planes. For Q = 2KF equation (6) can be diagonalized exactly. 

For Q + 2KF we have to diagonalize an infinite matrix. This is performed by a 
sequence of 2 X 2 rotations in the space K ,  K +- Q, K 2 2Q, .  . .. Higher states such as 
IK -c ZQ} can be neglected since the energies of the holes in the vicinity of the Fermi 
spheresatisfyl/la(K) = E(K 2 2Q)1< 1. Theleadmgcontributioncomesfromthestates 
IK), ( K  + Q) and ( K ) ,  ( K  - Q}. In this subspace we diagonalize equation (6). We 
introduce eigenvector operators yo( K) and eigenvalues f( K). We represent the original 
operators C ( K )  in terms of the new ones and obtain 

C , ( K )  = y,( K )  cos at (K) cos a- (K) 
- o [ ~ v ( K +  Q)sincu+(K)+~,(K-Q)~incu-(K)I (7) 
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where 
I ( K ,  K k Q) = 12f(K)f(K k Q) 

COS 20, (K) = 11 + I ( K ,  K * Q)/[&(K) - E(K * Q)]'}"". 

&r) = 2 y ( ~ )  exp(iKr). 

(9)  
In real space we define new spinors 

K 
Using this representation we rewrite the action given in equation (5). Averaging over 
the Fermi sphere we obtain that the gauge field couples only to spin up or spin down, 
and the mixing term vanishes [14]: 

m-'q+(i-, r)[(a,s)g-'Iv(r, 5 )  = m*-'V+(r. t)[io3A,]$(r, t) 
M*-' = 

(10) 

m-'(Cos2cu+(K) cos2a-(K))fs. (11) 
The meaning of equation (10) is that holes with spin up couple to the gauge field A, 

and holes with spin down to the same gauge field with opposite sign -Ac. Since the 
gauge field A, is analogous to the scalar potential in electrodynamics, we may say that 
the holes have opposite charges (the A, component is equivalent to the ordinary vector 
potential in electrodynamics). 

This result is consistent with the picture given in [12], where the spinor represents 
spinupateveositesandspindownat oddsitesorviceversa. Wemention that thevalidity 
of these results depends on the hole concentration. The hole concentration determines 
the Fermi energy. The mixing between states IN, IK * Q) is controlled by the ratio t/Z 
and the hole concentration 6 (KF = A(2zS)'D). For Q = 2KF the mixing is strong and 
equation (10) is independent of f / I .  For small hole concentration (Q > 2KF) equation 
(10) dependson t/I. Therefore, for a fixed value of t / I ,  equation (10) is valid for 6 > amin 

For the remaining part of the paper we consider hole concentrations such that 
6 > and use equations (10) and (11). The approximation involved in equation (10) 
replaces @u3$ by @[u3 + cu(a - u3)]q, where la( Q 1, (cu) = 0 is the xy anisotropy 
parameter representing the spin-flip contribution. Since cx is small, the leading con- 
tribution will come from the 'Ising' part U).  Investigating the Heisenberg AF action we 
find that after integrating the 'Z variables the effective action depends only on two 
parameters, the gauge fieldA and the Lagrange field A [13]. 

with 6,i. - (t/Z)Z. 

3. The derivation of the effective holehole interaction 

The action that contains the holes and the AF Heisenberg Hamiltonian takes the form 

S = [drJd3r[$+(r ,  t) ((a, + L4,03) 
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Weobservethat theactiongiveninequation(12) hastwogaugefieldsA“andA.The 
first is the normal electromagnetic field with the positive charge e (the electromagnetic 
charge of the holes). The second gauge field has the origin from the antiferromagnetic 
interaction. This gauge field couples the two charged bosons z I ,  z2 Owing to the Kondo 
coupling between the holes and the copper spins M = z*uz, the holes behave as if they 
had additional ‘charges’ (holes with spin up couple to A, and holes with spin down to 
-Ar). The absolute value of the ‘charge’ is obtained from the coupling constant, which 
governs the gauge fluctuations. 

TheactionT(A, A)containstwoparts: T(0, (A))+ [T(A, A) - T(0, (A))]. Thefirstone 
determines the values(X) = M 2  with M-lbeing the correlationlength of the two charged 
bosons z,, z2 and therefore the correlation length of the spin-spin correlations, 

( M ( x )  . M ( y ) )  = ( z + ( x ) 4 x ) z + C v ) d Y ) )  - a2 ( z ~ ( x ) z , ~ ) ~ ( z g l ( Y ) z g ( x ) )  
=.P 

- exp(-ZMlx - y l ) .  
ThesecondpartT(A, A)willbeshownto beanalogousto theactionoftheelecromagnetic 
field. The strength of those fluctuations iscontrolled by the coupling constant IMI, which 
is also the inverse of the correlation length of the charged bosons zI, z 2  

We expand the action T(A, A) in the large-N expansion. Following the derivation 
given in [13] (pp 139-42) we have 

r(A,,A = ( A )  + 0) = r(0, ( A )  = Mz) + 5 2 [ o ( q ) N q ) 4 - q )  + A p ( q ) ~ p v ( q ) A v ( ~ ) l .  
N 

9 

(14) 
At the order of one loop 

and satisfies n(q),-o # 0. For npu(q) we find 

In agreement with the gauge invariance we have q,+(q) = 0. The field o(q) is massive 
and can be neglected. The only important term is the second one, which is identical to 
the action of the electromagnetic field: 

T(A,, A)  = r ( O , M Z )  + dr(F,,)’ = r(0, M’) 

dT[(aZA,)’ + (V X A,)’ + (VAA,)*]. 

Equation (15) was obtained for large Nand can be problematic for our case N = 2. It is 
expected on the basis of gauge invariance that, for J < .Ic, a l/Nz correction will not 
change the form of equation (15). The effect of the 1/N2 wiU be to renormalizeM * MR. 
This expansion is valid only for massive 2 particles M # 0. Ford = 3 we find that the 
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particles Z have a gap M for y > ye (J < J J .  The value of the gap is obtained by the 
solution ( d T / a A ) l l , M a  = 0 and is given for d = 3 for D = 2 + 1 by the relation 
M - h[ l  - (1/4’zyo)] [13]. When we rescale the action given in equation (15) such that 
it takes the form of the electromagnetic action, we find A + ( M / 2 q N ) A .  As in electro- 
dynamics we identify the coupling constant of A with a new ‘charge’ e* Ef M / 2 v N .  
(When J+ J, the gap M and the charge vanish.) Therefore this description is valid only 
in the disordered spin phase J < J,. 

In equation (15) we have separated the longitudinal part from the transverse one. In 
the Coulomb gauge we eliminate the longitudinal component A,. A, satisfies the Gauss 
law, 

v’(~A,) = -e *$+( r ,  z)u3$(r, a) 

with positive and negative charges given by e* = M / 2 v N .  Solving the Gauss equation 
we find the following effective Hamiltonian: 

H = d2r$+ (r, z) 
(G 1 (a, + eAEM + ie*u,A,)’) $(r, z) 

I I  tiZ) 
I 

I 
+ ddr  ddr‘[$+(r, a)u3$(r, z)] ( r ,  r ’ ) [$+(r’ ,  z)u3$(r‘, z)] 

+ 1 ddif(d,A,)Z + (V X A,)’]. (16) 

The effective Hamiltonian given in equation (16) is our main result. We have an 
attractive Coulombic potential between the holes (with opposite spins), which have 
positive and negative ‘charges’ e* (in addition the holes have positive electromagnetic 
charge e). For 7 = 0 (d  = 2 )  we find an attractive potential V(r) = -e*’ In(r/a), and for 
q # 0 (d = 3) we have V(r)  = -e*’/r. The origin of this attractive Coulombic potential 
is the zl, z 2  bosons from which the holes gain the ‘charge’ &e*. The attraction is a result 
of exchange of a gapless gauge boson A,, between two holes of opposite ‘charges’ e*, 
-e* with the same electromagnetic charge e. 

JandJ < J,.Thisequation 
was obtained fwith the aid of two approximations, the 1/N expansion in equation (15) 
and the result given in equation (10). If the approximation in equation (10) is not used 
we have to substitute in equation (16) @[u3 + (Y(U - u3)]q instead of $u3q with 
(Y 1 ( a  is the xy anisotropy). This will not change the basic results for small (Y, which 
is a function of t/l < 1. as t/ldecreases, the spin-flip parameter &decreases and the spin- 
flip length 1, increases. Therefore we need that I ,  > M-’ (M-’ is the spin correlation 
length in the disordered phase). This condition I,M > 1 is fulfilled for t/I < 1, I 2  J, 
J < J,, and the spin-flip effect is negligible. 

It is important to  remark that the final Hamiltonian given in equation (16) does not 
contain the charged bosons z,, z2 and therefore M = z+uz. They were completely 
integrated (see equation (13)). This is only possible when (A) = M’ # 0 such that the 
magnetic correlation length (in the disordered AF phase) is much smaller than the 
correlation length of the gauge field A,,. 

An additional comment can be made on the physics described by the action T(A, d) 
(see equation (15)). When M’ > MZ the gauge field A,, has an infinite correlation length 
(the photon phase). In this case the correlation length l / M  of the charged bosons zl, z2 

Equation(16)isvalidfortherangeofparameterst < I , I  



6894 D Schmeltzer 

and spinsM is short. In the opposite limit M 2  < M :  the ‘photon’ phase is destroyed and 
the ‘charged’ bosons form, at large distances, neutral spin variables M. 

In this case the Hamiltonian (16) is not valid since the spin variables have long 
correlation lengths and cannot disappear from the action. 

According to Polyakov [13] a critical value of M: exists in 3 + 1 dimensions. It is for 
this reason that we need the antiferromagnetic coupling q between the plane to be non- 
zero (see equation (3)). The result of 7 # 0 is that the infrared fluctuations are in 3 + 1 
dimensions. 

4. The binding proble-ussions 

In the remaining part of the paper we will concentrate on solving the Hamiltonian given 
in equation (16) at the mean-field level. Owing to the fact that e* is not small and the 
hole concentration is small, it makes no sense to solve the Bardeen-Cooper-Schrieffer 
(BCS) equation for the gap A(K) given by 

We look now for the solution of two holes, and check if the two holes bind together. 
The variational wavefunction for two holes is given by 

lv)= Z x h  - rdb+(r1,r2)10)  
rlr2 

where 10) is the vacuum with no holes and 

b + ( r j , r d  = u&(rd$%4 
a=+.- 

is the two-hole creation operator. Performing the variation (qIHlq) with {q Iq) = 1 we 
find the following eigenvalue equation in the centre-of-mass system: 

[-2iV: + u(r)]x(r) = ax(r) i- 1/(2m*). (18) 
We assume an anisotropic three-dimensional system with V(r)  = -e*2/r (this is not 

completely justified since the electronic dispersion in the L direction is much smaller 
than that in the plane). For the isotropic case, we find a hydrogen-lie solution with 
eigenvalues An = -e*’/tn2 and with a binding radius (the Bohr radius) E = r;/e*’. In 
order to consider a realistic situation we assume the potential V(r) = -e*’/(? + dz)l/z, 
where r is the distance between the hole in the plane and d is the distance between the 
planes. 

As a result the binding occurs between holes in adjacent planes. Such apotential has 
a bound-state solution. This can easily be seen if we take V(r)  = -e*2/d for r < d and 
V(r)  = 0 for r > d (this problem was solved in 1131 p 84). 

The existence of a bound-state solution for two holes leads to a picture similar to the 
Wannier excitons. First we obtain a bound state for two holes and assume that the pairs 
of holes interact via the residual interaction between the pairs. This picture is valid for 
the dilute limit of holes. We consider the case t& < 6 < a,, and E\ l/V6 = L (L is 
the average distance between the holes and E - i/e*2is the binding radiusof two holes). 
When 5 = L this picture is not valid and we have no superconductivity. The relation 
E = L determines 6,- = l/E2. 
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The residual interaction between the pairs at large distances is negligible since the 
charge of the pair is zero. (When we consider electromagnetic effects the interaction 
between the pairs is (2e)z/R for R S 5; e* is replaced by e* - e for R S 5.) The effective 
Hamiltonian for the pairs is a boson model with a hard-core repulsive interaction, which 
has a superfluid transition [ 161 as a function of the pair concentration 6/2.  

We compare our results with other models that make use of spin fluctuations for 
superconductivity. 

Using magnetic interaction, we show that in certain ranges of parameters the mag- 
netic fluctuations are described by the fluctuations of two 'charged' boson fields zl, z2,  
which exchange a gauge field A, (similar to the exchange of a photon between two 
charged particles). 

We do not use directly spin fluctuations (like other authors [I-SI) but rather their 
constituents. The spin fluctuation becomes the natural description when we approach 
the Nee1 phase. In this case the correlation length 1/M of the zl, z2 fields increases 
M- 0), the gauge field a, loses its infinite correlation length (the photon becomes 
massive) and our picture becomes invalid. 

For the one-band Hubbard model in the limit of small U, Wen, B a n g  and Schrieffer 
[16] have useda background fieldsimilar to the one described byequation(6). However, 
they consider normal spin fluctuations and we show that the relevant fluctuations in our 
case are the 'electromagnetic' type, which lead to l / r  interactions. 

To conclude, we have shown that gauge fields induced by antiferromagnetic fluc- 
tuations in the disordered phase lead to binding of holes. The bosonic fluid created by 
the whole pairs has a superfluid transition [U]. 
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